arrangement of the user interface system 100 suitable to providing tactile guidance and/or detecting user input may be used.

[0024] The sheet in of the preferred embodiment functions to define a surface 115 on one side and at least partially defines a plurality of cavities 125 on an opposite side. The sheet in preferably includes a layer no that defines the surface 115 and a substrate 120 that supports the layer 110 and at least partially defines the plurality of cavities 125. The sheet 111 is preferably similar to the sheet and layer taught in U.S. application Ser. No. 12/319,334, but may alternatively be any suitable device that a sheet in that defines a surface 115 on one side and at least partially defines a plurality of cavities 125 on an opposite side.

[0025] As shown in FIGS. 3a, 3b and 3c, the cavities 125 of the preferred embodiment each function to hold a fluid and to have at least two volumetric settings: a retracted volume setting (shown in FIG. 3a) and an expanded volume setting (shown in FIG. 3b). When in the expanded volume setting, the user may inwardly deform the particular region 113 to provide a user input (shown in FIG. 3c). The fluid is preferably a liquid (such as water, glycerin, or ethylene glycol), but may alternatively be a gas (such as air, nitrogen, or argon) or any other substance (such as a gel or aerogel) that expands the cavity 125 and deforms the surface 115. In the expanded volume setting, the cavity 125 expands above the plane of the surface 115, thereby deforming a particular region of the surface 115. The deformation of the particular region 113 functions to provide tactile guidance and/or tactile feedback on the surface 115 for the user. The deformation of the particular region 113 also preferably functions to inform the user of the type of input the deformation represents. For example, the deformation of the particular region 113 may be of a shape that indicates the type of input that the deformation represents. Alternatively, the sheet 111 may include tactile instructions, for example, a pattern of beads or substantially small protrusions that may be felt by the user on the particular region 113 that indicate the type of input the deformation represents. The tactile instructions on the particular region 113 may alternatively be any other type of feature that is able to be felt tactilely by the user.

[0026] As shown in FIGS. 4-5, the plurality of cavities 125 and the displacement device 130 are preferably coupled to the fluid network 200, which functions to allow fluid to communicate through the user interface system 100 to expand and retract the plurality of cavities 125. The fluid network 200 preferably includes a channel 138 that preferably couples each of the plurality of cavities 125, either directly or indirectly (shown in FIG. 6), to the displacement device 130. The channel 138 may be composed of a plurality of segments (or "branches") that couple to each of the plurality of cavities 125 and the displacement device 130. The fluid network 200 may also include a reservoir 132 that functions to contain a volume of the fluid.

[0027] Each of the plurality of cavities 125 preferably function substantially similarly and are expanded and retracted by fluid displaced by the displacement device 130. In some variations, the plurality of cavities 125 may be substantially similar to each other. In other variations, the plurality of cavities 125 may have differences in overall geometry, volume, expansion properties, and/or retraction properties. The plurality of cavities 125 preferably provide the user interface system 100 with the ability to adapt to a variety of user

interface scenarios, for example, to user interface scenarios that require more than one possible input (e.g. "Yes" or "No").

[0028] As shown in FIGS. 4a and 4b, the displacement device 130 of the preferred embodiment functions to expand the cavity 125, subsequently deforming the particular region 113 of the surface 115. The displacement device 130 preferably functions to both expand and retract the cavity 125. In other words, the displacement device 130 functions to increase the volume of fluid within the cavity 125 and decrease the volume of fluid (or "drain" fluid) in the cavity 125. The user interface system 100 may, however, use another device or method to decrease the volume of fluid. The displacement device 130 may be one of several variations. In a first variation, as shown in FIG. 5a, the displacement device 130 includes a linear actuator that displaces fluid in between the displacement device 130 and a cavity 125. In a second variation, as shown in FIG. 5b, the displacement device 130 includes a heating element (for example, a resistive heater composed of a material such as TaN or Nichrome) that functions to expand the volume of fluid contained within a cavity 125. In a third variation, as shown in FIG. 5c, the displacement device 130 includes a micro-pump 134 (for example, pump #MDP2205 from ThinXXs Microtechnology AG of Zweibrucken, Germany or pump #mp5 from Bartels Mikrotechnik GmbH of Dortmund, Germany) that pumps fluid from a reservoir 132 to a cavity 125. The micro-pump 134 preferably pumps fluid between the cavity 125 and the reservoir 132. In a variation of the fluid where the fluid is ambient air, the pump 134 may function to pump air from the surrounding environment into the cavity 125. The third variation may alternatively include two micro-pumps 134, a first to pump fluid into the cavity 125 from the reservoir 132 and a second to pump fluid from the cavity 125 into the reservoir 132. However, any other suitable type of displacement device 130 may be used.

[0029] Although the cause of the deformation of a particular region 113 of the surface 115 has been described as a modification of the volume of the fluid in the cavity 125, it is possible to describe the cause of the deformation as an increase in the pressure below the surface 115 relative to the pressure above the surface 115. When used with a mobile phone device, an increase of approximately 0.1-10.0 psi between the pressure below the sheet 110 relative to the pressure above the sheet 110, is preferably enough to deform a particular region 113 of the surface 115. When used with this or other applications, however, the modification of the pressure may be increased (or possibly decreased) by any suitable amount. For example, when the user interface system 100 is used in environments with different ambient pressures such as in an airplane where ambient pressure is lower than that closer to sea level, the displacement device 130 may be adjusted to provide less of a pressure change to achieve the same level of expansion of the cavity 125. Additionally, each of the plurality of cavities 125 may expand with a different pressure change; for example, a first cavity 125a may expand with a change of 0.1 psi while a second cavity 125b may expand with a change of 0.5 psi.

[0030] As mentioned above, the user interface system 100 preferably includes a plurality of cavities 125. The displacement device 130 preferably expands the plurality of cavities 125 in one of four preferred embodiments. In a first preferred embodiment, as shown in FIGS. 6-7, the displacement device 130 preferably expands a first cavity 125a and a second cavity